Tracking Single DNA Nanodevices in Hierarchically Meso-Macroporous Antimony-Doped Tin Oxide Demonstrates Finite Confinement.

نویسندگان

  • Daniel Mieritz
  • Xiang Li
  • Alex Volosin
  • Minghui Liu
  • Hao Yan
  • Nils G Walter
  • Dong-Kyun Seo
چکیده

Housing bio-nano guest devices based on DNA nanostructures within porous, conducting, inorganic host materials promise valuable applications in solar energy conversion, chemical catalysis, and analyte sensing. Herein, we report a single-template synthetic development of hierarchically porous, transparent conductive metal oxide coatings whose pores are freely accessible by large biomacromolecules. Their hierarchal pore structure is bimodal with a larger number of closely packed open macropores (∼200 nm) at the higher rank and with the remaining space being filled with a gel network of antimony-doped tin oxide (ATO) nanoparticles that is highly porous with a broad size range of textual pores mainly from 20-100 nm at the lower rank. The employed carbon black template not only creates the large open macropores but also retains the highly structured gel network as holey pore walls. Single molecule fluorescence microscopic studies with fluorophore-labeled DNA nanotweezers reveal a detailed view of multimodal diffusion dynamics of the biomacromolecules inside the hierarchically porous structure. Two diffusion constants were parsed from trajectory analyses that were attributed to free diffusion (diffusion constant D = 2.2 μm2/s) and to diffusion within an average confinement length of 210 nm (D = 0.12 μm2/s), consistent with the average macropore size of the coating. Despite its holey nature, the ATO gel network acts as an efficient barrier to the diffusion of the DNA nanostructures, which is strongly indicative of physical interactions between the molecules and the pore nanostructure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxide-supported IrNiO(x) core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting.

Active and highly stable oxide-supported IrNiO(x) core-shell catalysts for electrochemical water splitting are presented. IrNi(x)@IrO(x) nanoparticles supported on high-surface-area mesoporous antimony-doped tin oxide (IrNiO(x)/Meso-ATO) were synthesized from bimetallic IrNi(x) precursor alloys (PA-IrNi(x) /Meso-ATO) using electrochemical Ni leaching and concomitant Ir oxidation. Special emphas...

متن کامل

Spectroelectrochemistry of cytochrome c and azurin immobilized in nanoporous antimony-doped tin oxide.

Stable immobilization of two redox proteins, cytochrome c and azurin, in a thin film of highly mesoporous antimony-doped tin oxide is demonstrated via UV-vis spectroscopic and electrochemical investigation.

متن کامل

Assembly of antimony doped tin oxide nanocrystals into conducting macroscopic aerogel monoliths.

We present the assembly of preformed antimony doped tin oxide nanobuilding blocks into centimeter sized aerogels with surface areas exceeding 340 m(2) g(-1). After calcination, the resistivity of the aerogels was decreased by 4 orders of magnitude to a few kΩ cm, with the primary conducting structures measuring only a few nanometers.

متن کامل

Ambipolar doping in SnO

Articles you may be interested in Enhanced separation efficiency of photoinduced charges for antimony-doped tin oxide (Sb-SnO2)/TiO2 heterojunction semiconductors with varied Sb doping concentration

متن کامل

Water Splitting: Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl4 Treated 3D Antimony‐Doped SnO2 Macropore/Branched α‐Fe2O3 Nanorod Heterojunction Photoanode (Adv. Sci. 7/2015)

In article number 1500049, Dai-Bin Kuang and co-workers demonstrate a novel macroporous antimony-doped SnO 2 as dedicated charge collector with high surface area and optical enhancement to load hematite nanorods for highly efficient water splitting. With post treatments, the composite photoanode achieves an impressive photocurrent density under sun illumination.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 33 25  شماره 

صفحات  -

تاریخ انتشار 2017